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Skew-symmetr ic massless fields, their potentials being r-forms, are close
analogues of Maxwell’ s field (though the nonlinear cases also should be
considered). We observe that only two of them (r 5 2 and 3) automatically yield
stress-energy tensors characteristic of normal perfect fluids. It is shown that they
naturally describe both nonrotating (r 5 2) and rotating general relativistic perfect
fluids (then a combination of r 5 2 and r 5 3 fields is indispensable) and possess
every type of equation of state. Meanwhile, a free r 5 3 field is completely
equivalent to the appearance of the cosmological term in Einstein’ s equations.
Sound waves represent perturbations propagating on the background of the r 5
2 field. Some exotic properties of these two fields are outlined.

1. INTRODUCTION

Many attempts have been dedicated to giving a translation of (semi-)

phenomenological hydrodynamics unto the field-theoretic language (I use

the word `translation’ to contrast with the idea of constructing a theory which
could automatically give the well-known perfect fluid properties for solutions

whose physical meaning is obvious ab initio, as well as lead to natural

generalizations of old concepts). A thorough review of many publications

on the Lagrangian description of general relativistic perfect fluids is given

in Brown (1993); practically at the same time a nice paper by Carter (1994)
appeared which may be considered as a climax of the era begun by Taub

(1954) [probably already even by Clebsch (1859)in Newtonian physics] and

later developed by Schutz (1970). One may mention few pages in Hawking

and Ellis (1973) on a Lagrangian deduction of the dynamics of perfect fluids,

but this subject clearly served there as a secondary accompanying theme
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only. Below I try to avoid the translation-style approach (usually based on

introduction of several independent scalar potentials) and consider another

way which could be more direct and natural. The translation-like procedure
will be used only to illustrate our new approach in concrete examples. Except

for a mere mention of the problem of finding new exact solutions of Einstein’ s

equations on the basis of the proposed field-theoretic description of perfect

fluids (in the concluding Section 9), I do not touch upon it in this paper.

The main idea is to see what simplest fields automatically possess the

form of a stress-energy tensor which is characteristic for a perfect fluid,

T pf 5 ( m 1 p)u ^ u 2 pg (1.1)

[see a short discussion in Kramer et al. (1980), taking into account that we

use the metric g with signature 1 2 2 2 ], where p is the invariant pressure

of the fluid, m its invariant mass (energy) density, and u its local four-velocity.

We say `invariant’ in the sense that these characteristics are related to the
local rest frame of the fluid. The `simplest’ fields are understood as those

which are similar in their description to the Maxwell one: they are massless

and are described by skew-symmetric potential tensors (of rank r) whose

exterior differential represents the corresponding field tensor. Thus the con-

nection coefficients do not enter this description. The Lagrangian densities
are functions of quadratic invariants of the field tensors; however, some

mixed invariants of the field tensors (and sometimes, potentials) will be used,

which should yield the same structure of the stress-energy tensor we need

for a perfect fluid (Section 2). When one speaks of a perfect fluid, its isotropy

(Pascal’ s property) and absence of viscosity are necessarily meant. The most

characteristic feature of the tensor (1.1) is that it has one single ( m ) and one
triple ( 2 p) eigenvalues in general; this corresponds to Pascal’ s property. We

do not here consider the energy conditions; at least a part of this problem

can be ª settledº by an appropriate redefinition of the cosmological constant

to be then extracted from the stress-energy tensor. Neither shall we consider

here thermodynamical properties of fluids; their phenomenological equations

of state will be used instead (Kramer et al., 1980), namely the linear equation

p 5 ( g 2 1) m (1.2)

and the polytrope one,

p 5 A m g (1.3)

Applications of these equations of state to nonrotating fluids can be found
in Sections 4 and 8 (special relativistic limit) in paragraphs related to equations

(4.4), (8.9), and (8.11).

We shall conclude that only ranks r 5 2 and 3 correspond to (1.1),

though only the r 5 2 case leads to the m 1 p Þ 0 term in (1.1), but the
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fluid is then nonrotating due to the r 5 2 field equations (Sections 4 and 6);

moreover, in this case one comes to a limited class of equations of state. In

the pure r 5 3 case (Section 5), the u ^ u term in (1.1) is absent ( p 5
2 m ), thus reducing the stress-energy tensor to a pure cosmological term, the

corresponding field equation naturally yielding m 5 const. The r 5 3 field,

however, proves to be necessary alongside the r 5 2 one for description of

rotating fluids (Section 7), as well as of fluids satisfying more complicated

equations of state (e.g., the interior Schwarzschild solution, the end of Section

6). The scalar field case (r 5 0) does not meet some indispensable require-
ments and thus should be dropped (Section 3). We give concluding remarks

in Section 9.

2. STRESS-ENERGY TENSOR

It is well known that when the action integral of a physical system is

invariant under general transformations of the space±time coordinates, the

(second) Noether theorem yields definitions and conservation laws of a set
of dynamical characteristics of the system. These are, in particular, its (sym-

metric) stress-energy tensor and (canonical) energy-momentum pseudotensor.

The latter is important in establishing the commutation relations for the

creation and annihilation operators (the second-quantization procedure), while

the former acts as the source term in Einstein’ s field equations. Both objects

are mutually connected by the Belinfante±Rosenfeld relation. This paper
focuses on a study of the stress-energy tensor of the rank-2 and rank-3

fields described by skew-symmetric tensor potentials (2- and 3-forms) whose

exterior differentials serve as the corresponding field strengths. As already

mentioned, this approach does not involve the Christoffel symbols when

these fields and their interaction with gravitation are described in a coordinated
basis, thus representing the simplest scheme which resembles the general

relativistic theory of the electromagnetic field.

It is worth recalling some general definitions and relations leading to

the stress-energy tensor. Under an infinitesimal coordinate transformation

x8 m 5 x m 1 e j m (x), components of a tensor or tensor density change as

d Aa: 5 A8a(x8) 2 Aa(x) 5 : e Aa | ts j s
, t

(up to the first-order terms; this law is, naturally, the definition of Aa | t
s ), a

being a collective index [the notations of Trautman (1956), sometimes used
in the formulation of the Noether theorem and the general description of the

covariant derivative of arbitrary tensors and tensor densities in Riemannian

geometry: Aa; a 5 Aa,a 1 Aa | ts G s
a t ). Then the Lie derivative of Aa with respect

to a vector field j takes the form
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+ j Aa 5 Aa, s j s 2 Aa | t
s j s

, t [ Aa; s j s 2 Aa | ts j s
; t (2.1)

The stress-energy tensor density corresponding to a Lagrangian density L
follows from the Noether theorem (Noether, 1918; Mitskievich, 1958; Mit-

skievich, 1969) as

T b
a : 5

d L

d g m n
g m n | b a [

d L

d g m n g m n | ba (2.2)

Usually a rank-two tensor, and not its density, is considered,

T b
a 5 ( 2 g) 2 1/2T b

a , T b
a ; b 5 0 (2.3)

Turning now to fields with skew-symmetric potentials, one has for a

rank-r tensor field

F m a ... b : 5 (r 1 1)A[ a ... b , m ] [ (r 1 1)A[ a ... b ; m ] (2.4)

where the field potential A and the field tensor F 5 dA are covariant skew-

symmetric tensors of ranks r and r 1 1, respectively while

A 5
1

r!
A a ... b dx a Ù . . . Ù dx b , F 5

1

(r 1 1)!
F m a ... b dx m Ù dx a Ù . . . Ù dx b

The quadratic invariant of the field tensor is

I 5 * (F Ù * F ) [ 2
1

(r 1 1)!
F a 1... a r 1 1 F b 1... b r 1 1g

a 1 b 1 . . . g a r 1 1 b r 1 1 (2.5)

[An obvious special case is the electromagnetic (Maxwell) field (r 5 1).

From the expression (2.9) on, we shall use the notations A and F for the

potential and field tensor forms of the electromagnetic, or r 5 1, field only,
as well as I for the corresponding invariant.]

Lagrangian densities of the fields under consideration will be taken in

the general form L 5 ! 2 gL(I ), L(I ) being a scalar algebraic function of the

invariant (2.5). Then relations (2.2) and (2.3) yield

T b
a 5 2 L d b

a 2 2
- L

- g m b
g m a [ 2 L d b

a 1 2
- L

- g m a g m b (2.6)

so that, since L depends on the metric tensor only via I and due to (2.5),

T b
a 5 2 L d b

a 2
2

s!

dL

dI
F a m 1... m s F

b m 1... m s (2.7)

It is easy to see that field equations can be similarly rewritten using the

function L(I ):
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- L

d A a ... b
: 5

- L

- A a ... b
2 1 - L

- A a ... b , m 2 , m

5 0 Þ 1 ! 2 g
dL

dI
F a ... b m 2 , m

5 0 (2.8)

Further, a more general Lagrangian density is worth considering,

L 5 ! 2 gL(H, I, J, K ) (2.9)

a function of invariants of (skew-symmetric) fields of ranks 0, 1, 2, and 3:

H 5 * (d w Ù * d w ) 5 2 w , a w , a

I 5 * dA Ù * dA) 5 2 (1/2)F m v F m v , F 5 dA

J 5 * (dB Ù * dB) 5 2 (1/3!)G l m v G l m v 5 GÄ
k GÄ k ,

G 5 dB, B * m n
; n 5 2 GÄ m

K 5 * (dC Ù * dC ) 5 2 (1/4!)W k l m n W
k l m n 5 WÄ 2, W 5 dC 6 (2.10)

where * before an object is the Hodge star, and the duality relations hold:

B *
m n

5
1

2
E m n a b B a b , G l m n 5 GÄ k E k l m n , W k l m n 5 WÄ E k l m n (2.11)

E k l m n 5 ! 2 g e k l m n is the Levi-Civita skew-symmetric axial tensor, while
e 0123 5 1 1. Here p-forms are defined with respect to a coordinated basis as

f 5 (1/p!)f n 1 n 2... n p dx n
1 Ù dx n

2 Ù . . . Ù dx n
p

As an obvious generalization of (2.2) and hence of (2.6), the stress-

energy tensor corresponding to (2.9) then takes the form

T b
a 5 2 L d b

a 2 2
- L

- H
w , a w , b 2 2

- L

- I
F a m F b m

1 2J
- L

- J
( d b

a 2 u a u b ) 1 2K
- L

- K
d b

a (2.12)

where u a 5 GÄ
a /J1/2. When u ? u 5 1, the real vector u is timelike, and if

imaginary, it corresponds then to a spacelike real vector. We do not consider

here the null vector case (u ? u 5 0).

The expressions (2.6), (2.7), and (2.12) are equivalent to those which
involve variational derivatives with respect to the metric tensor, (2.2), if the

Lagrangian density is considered as a function of the quadratic invariants H,

I, J, and K.

3. FREE (IN GENERAL, NONLINEAR) SCALAR FIELD

In the free scalar field case, L 5 ! 2 gL(H ), one could also consider

the (normalized) gradient of the scalar field potential w as another four-
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velocity (say u
0

a 5 w , a / ! | H | ), but this vector obviously can be timelike only

if the scalar field is essentially nonstationary (as to the four-velocity u due

to the 2-form field B, the vector GÄ is automatically timelike for stationary

or static fields). In fact, the t dependence should dominate in w , and this

means that for scalar fields normal and abnormal fluids exchange their roles
(see the next section, where these concepts are also discussed).

For the sake of completeness, we mention here the field equation

1 ! 2 g
dL

dH
w , a 2 , a

5 0 (3.1)

and the stress-energy tensor

T b
a 5 2 L d b

a 2 2
- L

- H
w , a w , b (3.2)

of a free massless scalar field. T b
a has then one single and one triple eigenval-

ues, which we denote, as was done for perfect fluids in (1.1), as m and

2 p, respectively,

m 5 2H
dL

dH
2 L, p 5 L (3.3)

From these expressions we see that, if some incoherent fluid (dust) would

be described by this field, the Lagrangian L should vanish, so that the invariant

H has to be (at least) constant for this solution. But then the mass density

becomes constant, too, this description being obviously applicable only to

completely unphysical dust distributions.
These observations clearly show that the scalar field has to be excluded

from the list of fields suitable for the description of normal perfect fluids.

4. FREE RANK-2 FIELD

Let us next consider a free rank-2 field (L being a function only of J );

thus the stress-energy tensor (2.12) reduces to

T b
a 5 1 2J

dL

dJ
2 L 2 d b

a 2 2J
dL

dJ
u a u b (4.1)

Here, u evidently is eigenvector of the stress-energy tensor:

T b
a u a 5 2 Lu b

while any vector orthogonal to u is also eigenvector, this time with the (triple)

eigenvalue 2J dL/dJ 2 L. This is exactly the property of the stress-energy
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tensor of a perfect fluid, the only additional condition being that the vector

u should be a real timelike one. The latter depends, however, on the concrete

choice of solution of the rank-3 field equations. Thus we come to the conclu-
sion that

m 5 2 L and p 5 L 2 2J
dL

dJ
(4.2)

m is the invariant mass density and p is the pressure of the fluid. One may,

of course, reinterpret this tensor as a sum of the stress-energy tensor proper

and (in general) a cosmological term.

The free field equations for the field tensor G reduce to

1 J1/2 dL

dJ
u k 2 , l

5 1 J1/2 dL

dJ
u l 2 , k

Þ J1/2 dL

dJ
u l [

dL

dJ
GÄ

l 5 F Ä , l (4.3)

u ? u 5 1 by the definition. Thus the free r 5 2 field case can describe

nonrotating fluids only, since the vector field u (or, equivalently, GÄ ) determines

a nonrotating congruence. In order to identify u with the fluid’ s four-velocity,

one has to consider solutions with u real and timelike (we call this the normal

fluid case). The null case was already excluded from consideration, and when

GÄ is spacelike, one may interpret the corresponding solution as describing a
tachyonic (abnormal) fluid. The latter notion seems to be somewhat odious,

but it should be introduced if one formulates a classification of all possible

cases of perfect fluid-like stress-energy tensors (the well-known energy condi-

tions are closely related to this subject). We do not consider the tachyonic

fluid case below; moreover, we shall now show that all static, spherically
symmetric solutions of the rank-2 skew-symmetric field equations automati-

cally yield timelike vector field GÄ ; this should be only a part of a larger

family of physically acceptable solutions.

Perfect fluids characterized by (1.2) correspond to a homogeneous func-

tion of J as the Lagrangian, L 5 2 s J g /2, s . 0. The important special cases

are then the incoherent dust ( p 5 0) for g 5 1, incoherent radiation ( p 5
m /3) for g 5 4/3, and stiff matter ( p 5 m ) for g 5 2.

One may similarly treat polytropes, (1.3), though in this case the Lagran-

gian is determined only implicitly. We introduce here a notation L 5 2 l (J );

then m 1 p 5 l 1 A l g 5 2J d l /dJ and

J 5 exp F 2 # d l
l 1 A l g G (4.4)

where A and g are considered as constants. It is clear what kind of difficulty

one has to confront now: even approximately, this relation cannot be resolved

with respect to l , though, of course, polytropic fluids are well described in
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the field-theoretic language after all. A possibility to write some function

explicitly is a mere convenience and not a necessity.

One could begin the formulation of this approach with phenomenological
consideration of a perfect fluid2 just postulating the form of its stress-energy

tensor (1.1) and taking a general equation of state in the form m 5 m ( p). Define

r 5 exp F # d m /dp

m 1 p
dp G (4.5)

Then the conservation T m n
; n 5 0 implies ( r u n ); n 5 0. Therefore, a skew-sym-

metric tensor (superpotential) BÄ m n should exist such that r u m 5 BÄ m n
; n . A direct

comparison of (4.5) and (4.2) shows that r 5 J1/2, since, denoting BÄ m n
; n as

GÄ m , we see that J 5 GÄ ? GÄ ; 5 r 2 [cf. the notations in (2.10)]. This shows that
it is only natural to use a rank-2 field for description of a perfect fluid, and

the invariant J is automatically suggested; however, this heuristic approach

is more closely related to the case of a Lagrangian only linearly depending

on J.

In the static, spherically symmetric case, with a diagonal metric in the

curvature coordinates, one has to choose

B 5 sin q A(r) d q Ù d f , G 5 sin q A8(r) dr Ù d q Ù d f

where the function sin q appears to make the stress-energy tensor dependent

only on the radial coordinate; the standard spherical coordinate notations are

used. In this case,

J 5 2 A82 sin2 q grrg q q g f f . 0

For a natural 1-form basis comoving with the fluid,

u (0) 5 ! g00 dt 5 u, u (1) 5 ! 2 grr dr,

u (2) 5 r d q , u (3) 5 r sin q d f

the stress-energy tensor reads

T 5 2 L(J ) u (0) ^ u (0) 1 1 2J
dL

dJ
2 L 2

3 ( u (1) ^ u (1) 1 u (2) ^ u (2) 1 u (3) ^ u (3))

in conformity with (4.2).

2 The idea was suggested by J. Ehlers.
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5. FREE RANK-3 FIELD. THE ONLY INTERPRETATION:
COSMOLOGICAL TERM

In this case the Lagrangian depends only on the invariant K; thus

T b
a 5 1 2K

dL

dK
2 L 2 d b

a 5 2
L
k

d b
a (5.1)

k is Einstein’ s gravitational constant. This stress-energy tensor is merely

proportional to the metric tensor; therefore the coefficient 2KdL/dK 2 L 5
2 L / k obviously should be constant. It is trivially constant (and equal to
zero) indeed when L , K1/2, the field components W k l m n being then arbitrary.

Otherwise, it becomes constant (and nonzero) due to the field equations to

which vanishing of the stress-energy tensor divergence is equivalent. Indeed,

the equations

1 ! 2 g
dL

dK
W k l m n 2 , n

5 0 (5.2)

reduce to

K 1/2 dL

dK
5 const (5.3)

since ! 2 gE k l m n 5 2 e k l m n 5 const. We see that both cases (when L ,
K1/2 and L / K1/2) exactly correspond to the above conclusions. In the first

case this does not need comment, but when L / K1/2, the left-hand-side

expression in (5.3) is really a function of K. Hence from (5.3) it follows that
K itself should be constant. Thus the `cosmological constant’ L which appears

in (5.1) is really constant due to the field equations. These equations, in a

sharp contrast to the usual equations of mathematical physics, cannot be

characterized as hyperbolic ones (or otherwise). Moreover, the case of L ,
K1/2 corresponds to vanishing of the cosmological constant, and the field

equations now impose no conditions on K whatsoeverÐ the rank-3 field is
then arbitrary due to the field equation, a very particular situation for the

field theory indeed!

If L 5 s Kk with a positive constant s , then 2 k , 1 corresponds to

the de Sitter case; 2k 5 1, to the absence of cosmological constant (this is

the case of a phantom rank-3 field which is completely arbitrary, and otherwise
does not produce any stress-energy tensor at all); finally, 2k . 1 corresponds

to the anti-de Sitter case [see for standard definitions Hawking and Ellis,

(1973)]. We propose to call the rank-3 field a cosmological field; anotherÐ

MachianÐ reason for this will become obvious after a consideration of rotat-

ing fluids.
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6. NONROTATING FLUIDS

In a comoving frame, the local four-velocity of a fluid is u m , d m
0 , and

the x0 coordinate lines should form a nonrotating congruence. Since u ? u 5
1, in the case of a normal fluid,

u m 5 d m
0 / ! g00, GÄ m 5 J d m

0 (6.1)

with J being a function of the four (in general) coordinates. Thus

J 5 J 2g00 and u m 5 GÄ m / ! J (6.2)

To be more concise, we shall consider here the case of a homogeneous

function L(J ) 5 s Jk. Then Jk 2 1GÄ
l 5 F Ä , l , F Ä being a pseudopotential (with

the pseudoscalar property).
Let us now consider some perfect fluid solutions in general relativity

[for excellent reviews see Kramer et al. (1980) and Delgaty and Lake (1998)].

It is convenient to write this solution in comoving coordinates. Moreover,

let the fluid satisfy an equation of state p 5 (2k 2 1) m with k 5 const. Apart

from the metric coefficients, there will be only one independent function

characterizing the fluid (and its motion), say, m . In the scheme outlined above,
this function should be related to J , the only independent function involved

in the r 5 2 field (the metric tensor is supposed to be the same in the perfect

fluid and r 5 2 field languages). Clearly, the problem then reduces to a

determination of the relationship between the two functions. One finds

immediately

m 5 s Jk; thus J 5 ( m / s )1/2k / ! g00 (6.3)

Hence,

GÄ m 5 (1/ ! g00) ( m / s )1/2k d m
0 , F Ä , m 5 k( m / s ) (2k 2 1)/2kg0 m / ! g00 (6.4)

Example. The Klein Metric. The Klein metric (Klein, 1947; Kramer et
al., 1980) describes a static space±time filled with incoherent radiation, p 5
m /3. In this case,

ds2 5 r dt 2 2
7

4
dr 2 2 r 2(d q 2 1 sin2 q d f 2)

m 5 3/(7 : r 2), k 5 2/3

Then, obviously,

J 5 1 3

7 k s 2
3/4

1

r 2 , F Ä 5
2

3 1 3

7 k s 2
1/4

t

Example. The Tolman±Bondi Solution (Tolman, 1934; Bondi, 1947).

Now,
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ds2 5 d t 2 2 exp[ l ( t , R)] dR2 2 r 2( t , R)(d q 2 1 sin2 q d f 2)

m 5
F 8

k r8r 2 , p 5 0, k 5 1/2

r 5
F

2f
(cosh h 2 1), sinh h 2 h 5

2f 3/2

F
( t 0 2 t )

F, f, and t 0 are arbitrary functions of R. The translation into the s 5 2 field

language reads simply

J 5
F 8

k s r8r 2 , F Ä 5 t .

It is equally easy to cast the Friedmann±Robertson±Walker cosmological
solutions in the rank-2 field form (in fact, the FRW universe filled with an

incoherent dust represents a special case of the Tolman±Bondi solution).

Example. The Interior Schwarzschild Solution (Kramer et al., 1980).

The interior Schwarzschild solution is now a special case to be treated in

more detail. Its characteristic feature is that the mass density of the fluid

with which it is filled is constant, while the fluid’ s pressure decreases when

the radial coordinate grows, vanishing on some spherical boundary (thus

making it possible to join this solution with the exterior vacuum region).
However, this property clearly contradicts the relation between m and p
obtainable from a Lagrangian depending on one invariant, J, only. Therefore

one has to consider interaction, say, of r 5 2 and r 5 3 fields. We choose

the corresponding Lagrangian to be L(J, K ) 5 2 M(J )(1 2 a K 1/2) (the rank-

3 field obviously being a phantom one). Then

T b
a 5 F M(J ) 2 2J

dM

dJ
(1 2 a K 1/2) G d b

a 1 2J
dM

dJ
(1 2 a K 1/2)u a u b

Hence the former expression for m is not changed, but pressure is now a

function of the invariant K arbitrarily depending on coordinates:

m 5 M(J ), p 5 2J
dM

dJ
(1 2 a K 1/2) 2 M(J ) (6.5)

The fact that K really may be chosen arbitrarily follows from the field

equations. For the r 5 2 field one has

d F dM

dJ
(1 2 a K 1/2)GÄ G 5 0 (6.6)

and for the r 5 3 field,
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M(J ) 5 const (6.7)

without any other conditions on K. The latter equation is exactly what we

needed, and the first one then reduces to d [(1 2 a K 1/2)GÄ ] 5 0 or, in the
static case when K is independent of x 0 and GÄ 5 J1/2 ! g00 dx 0, simply to

(1 2 a K 1/2) ! g00 5 q2 (6.8)

where q is a constant.
However, the last equation seems to impose a critically strong restriction

on the choice of K (yet having been arbitrary) which should now automatically

fit the expression for pressure. Let us see if this is the case for the interior

Schwarzschild solution. The latter is described by

ds2 5 1 a 2 b ! 1 2
r 2

R2 2
2

dt2 2
dr2

1 2 r 2/R2 2 r 2(d q 2 1 sin2 q d f 2)

m 5
3

k R2 , p 5
3

k R2 1 2a

3 ! g00

2 1 2 6
(6.9)

a, b, and R are constants (for details see Kramer et al. (1980). If we take

M 5 s Jk, it is readily found that all conditions are satisfied indeed for k 5
a/3q. Then for m 5 const it is always possible to consider a linear r 5 2

field, k 5 1: one has only to choose q 5 a/3.

7. ROTATING FLUIDS

We have come to the conclusion that the r 5 2 and r 5 3 fields have

stress-energy tensors possessing eigenvalues typical of perfect fluids: in the

free field case, the r 5 2 field with eigenvalues characteristic of a usual

isotropic perfect fluid, and the r 5 3 field with only one quadruple eigenvalue

(thus the stress-energy tensor is proportional to the metric tensor: the cosmo-

logical term form). For description of a perfect fluid with the equation of
state p 5 ( g 2 1) m and a given constant value of g one needs only one

function, say, the mass density m [the metric tensor is considered as already

given, and the system of coordinates is supposed to be comoving with the

fluid, thus the four-velocity vector is u m 5 (g00)
2 1/2 d m

0 )]. It seemed that this

situation in all cases fits well for translating into the r 5 2 field language.

But we were confronted with the no-rotation condition for a perfect fluid
when the rank-2 field was considered to be free. It is clear that the only

remedy in this case is to introduce a nontrivial source term in the r 5 2 field

equations, thus a change to the non-free-field case or, at least, to include in

the Lagrangian a dependence on the rank-2 field potential B.
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The simplest way to do this is to introduce in the Lagrangian density a

dependence on a new invariant J1 5 2 B[ k l B m n ]B
[ k l B m n ] which does not spoil

the structure of the stress-energy tensor, simultaneously yielding a source
term (thus enabling us to eliminate the no-rotation property) without changing

the divergence term in the r 5 2 field equations. We shall use below three

invariants: the obvious ones, J and K, and the invariant just introduced of

the r 5 2 field potential, J1. One easily finds that

B [ k l B m n ] 5 2
2

4!
B a b B *

a b
E k l m n (7.1)

where B *
a b

: 5 1±2 B m n E
a b m n (dual conjugation). Thus J1/2

1 5 6 2 1/2B a b B *
a b

. In fact,

J1 5 0, if B is a simple bivector (B 5 a Ù b, a and b being 1-forms; only
the four-dimensional case to be considered); this corresponds to all types of

rotating fluids discussed in the literature. This cannot, however, annul the

expression which this invariant contributes to the r 5 2 field equations: up

to a factor, it is equal to - J1/2
1 / - B m n Þ 0. Thus let the Lagrangian density be

L 5 ! 2 g(L(J ) 1 M(K )J1/2
1 ) (7.2)

The r 5 2 field equations now take the form [cf. (4.3)]

d 1 dL

dJ
GÄ 2 5 ! 2/3M(K )B (7.3)

which means that introduction of rotation of the fluid destroys the gauge

freedom of the r 5 2 field. In turn, the r 5 3 field equations [cf. (5.2) and

(5.3)] yield the first integral

J1/2
1 K1/2 dM

dK
5 const [ 0 (7.4)

(when J1 5 0, as just stated). It is obvious that K (hence, M ) arbitrarily
depends on the space±time coordinates if only the r 5 3 field equations are
taken into account. Though the r 5 2 field equations (7.3) apparently show

that the GÄ congruence should in general be rotating, the r 5 2 field B is an

exact form for solutions with constant M (K ), thus its substitution into the

left-hand side of (7.3) via GÄ leads trivially to vanishing of G (and hence B).

Hence in a nontrivial situation the cosmological field K [see (2.10)] has to

be essentially nonconstant.
But the complete set of equations contains Einstein’ s equations as well.

One has to consider their sources and the structure of their solutions (some of

which fortunately are available) in order to better understand this remarkable

situation probably never encountered in theoretical physics before.



1010 Mitskievich

The stress-energy tensor which corresponds to the new Lagrangian den-

sity (7.2) is

T b
a 5 1 2 L 2 MN 1 2J

dL

dJ
1 2KN

dM

dK
1 2J1M

dN

dJ1 2 d b
a 2 2J

dL

dJ
u a u b

(7.5)

where we have used N (J1) 5 J1/2
1 . It is obvious that only the terms involving

L and J survive here (J1 5 0 5 N ). For a perfect fluid with the equation

of state p 5 ( g 2 1) m , one finds L 5 2 s J g /2, thus T b
a 5 2 g Lu a u b 1

( g 2 1)L d b
a .

Then one has a translation algorithm between the traditional perfect

fluid and r 5 2 field languages:

m 5 2 L 5 s J g /2, GÄ m 5 J d m
t , J 5

1

! g00 1 m
s 2

1/ g

G 5 dB 5 ! 3/2d 1 1

M(K 2 Ù d 1 dL

dJ
GÄ 2 6 (7.6)

[cf. (7.3)]. The function M depends arbitrarily on coordinates; thus one can

choose its appropriate form using the last relation without coming into contra-

diction with the dynamical equations.

We see that the cosmological field K plays a very special role in the

description of rotating fluids. This field makes it possible to consider rotation,

but its own field equations do not impose any restriction on K. (A similar

situation, but without rotation, was observed above in the case of the interior

Schwarzschild solution.) In each case, one has to adjust the K field using

the gravitational field solutions, thus from global considerations (this being

the final analysis of considerations of the last paragraphs). Together with the

fact that the free K field results in the introduction of the cosmological

constant, these properties of the cosmological field recall the ideas of the

Mach principle and a practically forgotten hypothesis due to Sakurai (1960).

Example. The GoÈ del Universe (GoÈ del, 1949). GoÈ del’ s universe filled

with a rotating perfect fluid is described by

ds2 5 a2 (dt2 1 2 ! 2z dt dx 1 z2 dx 2 dy2 2 z 2 2 dz2), ! 2 g 5 a4

p 5 m 5
1

2 k a2 , u m 5 a 2 1 d m
t , k 5 1 ( g 5 2)
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[in Kramer et al. (1980) p and m take other values, since a cosmological

term is considered there, but this is only a matter of convention; moreover,

there are misprints in the book: the factor a2 should be put in the denominator,
as we have written above]. Now it is easy to find

J 5 (2 k s a4) 2 1/2, GÄ 5 (2 k s ) 2 1/2 (dt 1 ! 2z dx), J 5 (2 k s a2) 2 1

while G 5 a2(2 k s ) 2 1/2 dx Ù dy Ù dz. Hence [see also (7.3)]

d 1 dL

dJ
GÄ 2 5 ! s / k dx Ù dz 5 ! 2/3M(K )B

so that

G 5 dB 5 ! 3 s
2 k

d 1 1

M 2 Ù dx Ù dz

This gives

M 5 2 ! 3 s
a2y

and B 5
a2y

! 2 k s
dx Ù dz

Example. Davidson’ s Fluid (Davidson, 1996). Another stationary solu-

tion with fluid being in a certain sense in a rigid-body rotation is described
by the metric

ds2 P(dt 1 ! 23/8 ar2d f )2 2 r 2P3d s 2 2 P 2 3/4(dr 2 1 dz2)

! 2 g 5 rP5/4, while

P 5 ! 1 1 a2r2, g 5 5/3, m 5 (9a2/2 k )P 2 5/4

We find

J 5 1 9a2

2 k s 2
3/5

P 2 5/4, J 5 1 9a2

2 k s 2
6/5

P 2 3/2

dL

dJ
GÄ 5 2

5 s
6 1 9a2

2 k s 2
2/5

(dt 1 ! 23/8ar 2d f ),

G 5 1 9a2

2 k s 2
3/5

r dr Ù dz Ù d f

M 5 1 9a2

2 k s 2
2 1/5

5 ! 23 s a

4 ! 3z
, B 5 2 1 9a2

2 k s 2
3/5

zr dr Ù d f
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In both of these examples we have determined M as a function of a

coordinate without mentioning the r 5 3 field tensor, since in the rotating

perfect fluid theory only the coordinate dependence of M matters. It is clear
that our considerations are in complete agreement with the field equations.

8. SPECIAL RELATIVISTIC THEORY

In special relativity, when g m n 5 h m n 5 diag(1, 2 1, 2 1, 2 1) (in Cartesian

coordinates), one does not use Einstein’ s equations, so that a homogeneous

distribution of a perfect fluid in infinite flat space±time becomes admissible.
We shall consider here the behavior of weak perturbations on the background

of such a homogeneous field of a nonrotating perfect fluid. Then in the zeroth

approximation GÄ coincides with the four-velocity of the fluid, u 5 dt (in

comoving coordinates; t 5 x0), J 5 1 (the background situation).

Now let a perturbation be introduced thus

GÄ k 5 d k
t 1 d GÄ k , J 5 1 1 2 d GÄ t 1 d GÄ k d GÄ

k (8.1)

These relations might be considered as exact, though it is easy to see that,

if one does not intend to consider the linear approximation only, it would be
worth expressing d GÄ as a series of terms which describe all orders of magni-

tude of the perturbations. However, in the present context this will be of

minor importance, and we shall deal with linear terms only. Then

L(J ) 5 L(1) 1 2 F dL

dJ G 1

d GÄ t 1 . . . (8.2)

Here the dots denote higher order terms. The expression for L(J ) is equivalent

(up to its sign) to the mass density, but one has still to take into account the

field equations (4.3). These read, in similar notations,

F Ä , k 5 F dL

dJ G 1

d t
k 1 F dL

dJ
d l

k 1 2
d 2L

dJ 2 d t
k d l

t G 1

d GÄ
l 1 . . . (8.3)

The only property which matters in this expression is its gradient form. We

arrive at the following two equations (the Latin indices being three-

dimensional),

( F Ä ), t, i 5 ( F Ä ), t, i Þ F dL

dJ
1 2

d 2L

dJ 2 G 1

( d GÄ
t)i 5 F dL

dJ G 1

( d GÄ
i), t (8.4)
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and

( F Ä ), i, j 5 ( F Ä ), j, i Þ F dL

dJ G 1

( d GÄ
i), j 5 F dL

dJ G 1

( d GÄ
j), i (8.5)

This set of equations is satisfied if

d GÄ
i 5 F dL/dJ 1 2d 2L/dJ 2

dL/dJ G 1 1 # d GÄ
t dt 1 f (x) 2 , i

(8.6)

with two still undetermined functions, d GÄ
t(t, x) and f (x). But we have not

yet taken into account that d GÄ (as well as GÄ ) is divergenceless. This actually

means that

d GÄ t
, t 5 2 d GÄ i

, t 5 d GÄ
i, i 5 F dL/dJ 1 2d 2L/dJ 2

dL/dJ G 1

D 1 # d GÄ
t dt 1 f (x) 2

D is the Laplacian operator. Differentiating both sides of this relation with

respect to t 5 x0, we find at last

- 2 d GÄ
t

- t2 5 F dL/dJ 1 2d 2L/dJ 2

dL/dJ G 1

D d GÄ
t (8.7)

which is a modification of the D’ Alembert equation (involving a velocity

different from that of light). Since the propagation properties of perturbations
of the mass density m , of the Lagrangian L, and of the field component GÄ

t

mutually coincide in the first approximation, one concludes that the velocity

of the low-amplitude density (sound) waves in a fluid is equal to

cs 5 ! F dL/dJ 1 2d 2L/dJ 2

dL/dJ G 1

(8.8)

in units of the velocity of light. One has, of course, to remember that in this
theory the laws of thermodynamics were used only implicitly (via equations

of state). However, some important properties of the sound waves already

can be seen in this result.

Let us consider first the simplest case, which is described by the equation

of state (1.2) Then L 5 2 s J g /2, and we have

cs 5 ! g 2 1 (8.9)

When g 5 1, the perturbations do not propagate (in the comoving frame of

the fluid); this is the case of an incoherent dust whose particles interact only

gravitationally, i.e., do not interact in a theory devoid of gravitation (special
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relativity). When g 5 2, we have stiff matter, in which (as is well known)

sound propagates with the velocity of light, and this is exactly the case in

our field-theoretic description: cs 5 1. When the value of g lies between 1
and 2, we have more or less realistic fluids, the velocity of sound in them

being less than that of light. For example, in the case of incoherent radiation

(see a consideration of the Klein metric above), cs 5 1/3.

Turning to consideration of a polytrope (1.3) and taking into account

its field-theoretic description (4.4), it is easy to find for the sound velocity

(8.8) the corresponding form

cs 5 ! F 1 2 2 1 dJ

dL 2
2 2

d 2J

dL2 G 1

(8.10)

or, after a substitution of (4.4), exactly the standard expression

cs 5 ! g p/ m (8.11)

It is worth stressing that in this section all considerations were restricted

to the absence of a gravitational field as well as to weak perturbations of the

fluid density, but the velocity of propagation of the perturbations may be

relativistic. Thus the standard expression (8.11) represents in fact an exact

generalization of cs to the relativistic case; similarly, (8.9) gives the correct
value of the velocity of sound in the ultrarelativistic cases important in the

astrophysical context.

9. CONCLUDING REMARKS

As a summary of the results just described and in anticipation of some

others (to be presented elsewhere), it is worth systematizing the present

approach in the 3 1 1-dimensional spacetime. Our conclusions are essentially

based on a consideration of the stress-energy tensor of r-form fields (r 5 0,

1, 2, and 3), a fact which makes it clear why these conclusions partially
coincide with those of Weinberg (1996, Section 8.8), where only the gauge

covariance properties are taken into account.

A field whose potential is a skew-symmetric tensor of rank 4 (being

identically a closed form in four dimensions) has only trivial field strength

tensor, thus leaving for consideration the four fields used in (2.12).

The rank-3 field does not correspond to any real quantum particles
(a result obtained in collaboration with H. Vargas Rodrõ Âguez, to be

published elsewhere), thus these particles should be only virtual ones. In

the classical theory, the rank-3 field with any degree of nonlinearity is

equivalent to the appearance of the cosmological constant in Einstein’ s
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equations; when the Lagrangian density is proportional to K 1/2, the cosmo-

logical constant vanishes (thus suggesting a new interpretation of that

very fact). The global nature of Mach’s principle (admittedly related to

rotation phenomena) also seems to justify consideration of the rank-3 field

on a basis similar to that of the hypothetical fundamental cosmological

field proposed by Sakurai (1960).

The rank-2 field describes (sometimes in interaction with the cosmolog-

ical field) perfect fluids. The second quantization of the free rank-3 field

yields real quanta, but they have only spin zero: all other particles appear

as thoroughly virtual ones (another result in collaboration with H. Vargas

RodrõÂguez, also not included in this paper).

Then comes the rank-1 field, which, in its linear case, is the Maxwellian

one, making commentary unnecessary. And the last is the scalar field; I would

add here (to the information given in Sections 2 and 3) only one comment

on this field: its interaction with the rank-2 field mimics the electromagnetic

field, thus exactly and with the same degree of simplicity reproducing, for

example, the Reissner±NordstroÈ m black-hole spacetime without any electro-

magnetic field whatsoever (Mitskievich, 1998). This all follows from the

stress-energy tensor (2.12).

It is worth mentioning that in the 2 1 1-dimensional space±time the

r 5 1 field, formerly the (nonlinear) Maxwell one, now describes perfect

fluids, while the r 5 2 field is responsible for the cosmological term in the

3D Einstein equations.

The proposed description of perfect fluids is simple, and it yields exactly

the same characteristics of perfect fluids and relations between these charac-

teristics which are already well established in other approaches (see, e.g.,

our consideration of the special relativistic limit of the theory, yielding the

properties of sound waves in fluids). Moreover, our description suggests (and

simplifies the realization of) some new lines for the generalization of the

theory of perfect fluids (due to an extensive use of the Lagrangian formalism),

in particular, it makes the second quantization of (the sound in) the perfect

fluid in fact a mere routine.

The use of standard field-theoretic methods for the description of perfect

fluids and their excitations (phonons) may also help in evaluating the effect

of C
Æ
erenkov-type radiation of sound by narrow-front ed gravitational wave

jets (or, gravitons) in matter. Another possible application of the proposed

description of perfect fluids may be related to the construction of exact

Einstein±Euler fields (gravitation and perfect fluid) using the properties of

Killing±Yano tensors, if these would be admitted by the vacuum seed space-

times (see the method proposed in HorskyÂand Mitskievich (1989) for Ein-

stein±Maxwell fields, which uses Killing vectors).
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